If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-200x+16=0
a = 49; b = -200; c = +16;
Δ = b2-4ac
Δ = -2002-4·49·16
Δ = 36864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36864}=192$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-192}{2*49}=\frac{8}{98} =4/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+192}{2*49}=\frac{392}{98} =4 $
| 6^(1-2x)=360 | | 2y-y+4=10 | | 2x+4=4x+9 | | 1/×-5/2=4/x | | 7x-12=15x+9 | | 1/3x+2/5=22 | | y-6/4+(y+3)/5=5y-4/8 | | x/4+3=-6 | | 4y–10=-3 | | 0.004x=4000 | | 40.8=e–12.34 | | 15x-15=7x- | | X/3+5/6=1/2-x | | 2v^2=v+1 | | x-(-27)=20 | | 35/3*x^2-10*x+1=0 | | 35/3x^2-10x+1=0 | | 3x(x+5)=−8 | | x/10-4=-2 | | a/4+7=5 | | 24x+34=24x+34 | | -3x-10=2-19 | | 6(2x+2)+2(4x+6)+5=20x+30 | | 20x+29=20x+30 | | 4x+7-2=16 | | 10t-10=7+-4 | | 9x+35=4 | | (3m-6m^2=4)^2 | | (p−10)(p^2−2p−15)=0 | | 45+20y-y^2=0 | | x/2-2/7=7x+4/2 | | 4.8x-9.98=4.9 |